Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking.
نویسندگان
چکیده
Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, <0.153 and <0.055, respectively. The repeatability was higher for joint kinetic than kinematic parameters, as reflected in small values of SEM (<0.13 Nm/kg and <3.4°) and MDC (<0.335 Nm/kg and <9.44°). The obtained values of all parameters fell within the 95% limits of agreement. Our findings demonstrate the repeatability of the GRAIL system available in our laboratory. The SEM and MDC values can be used to assist researchers and clinicians to distinguish 'real' changes in gait performance over time.
منابع مشابه
Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
BACKGROUND Gait and cognitive functions can deteriorate during dual tasking, especially in people with neurological deficits. Most studies examining the simultaneous effects of dual tasking on motor and cognitive aspects were not performed in ecological environments. Using virtual reality technology, functional environments can be simulated to study dual tasking. OBJECTIVES The aims of this s...
متن کاملwww.isbglasgow.com Rehabilitation AS-0482 EFFECT OF VIRTUAL OBSTACLES NEGOTIATION ON TEMPORAL-SPATIAL GAIT IN HEALTHY YOUNG ADULTS
Introduction and Objectives: Negotiating obstacles is a complex motor-control task that is described as the most common cause of falling during walking [1-2]. Successful obstacle negotiation may be compromised in individuals with gait problems [3]. Understanding how individuals negotiate obstacles while maintaining a stable and safe walking pattern is therefore important for development of inte...
متن کاملHow to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?
In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked...
متن کاملSelf-paced versus fixed speed treadmill walking.
Instrumented treadmills are increasingly used in gait research, although the imposed walking speed is suggested to affect gait performance. A feedback-controlled treadmill that allows subjects to walk at their preferred speed, i.e. functioning in a self-paced (SP) mode, might be an attractive alternative, but could disturb gait through accelerations of the belt. We compared SP with fixed speed ...
متن کاملVirtual Reality and Musculoskeletal Pain: Manipulating Sensory Cues to Improve Motor Performance During Walking
Musculoskeletal pain (MSP) is the most expensive nonmalignant health problem and the most common reason for activity limitation. Treatment approaches to improve movement without aggravating pain are urgently needed. Virtual reality (VR) can decrease acute pain, as well as influence movement speed. It is not clear whether VR can improve movement speed in individuals with MSP without aggravating ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods in biomechanics and biomedical engineering
دوره 20 16 شماره
صفحات -
تاریخ انتشار 2017